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ward [3]) and ENO (Harten and Osher [4]) schemes. Later in
the decade, Engquist et al. [5] proposed yet another method ofFor wave propagation problems in linear and bilinear elastic solids

and a class of simple nonlinear solids the benefits of high-resolution introducing the required amount of dissipation, namely, the use
schemes in gasdynamics can be immediately extended to solid of nonlinear filters. The advantage of these filters is that they
mechanics. The Engquist filter for the system of conservation laws can be implemented into existing finite-difference codes. These
in gasdynamics is extended to solid mechanics and implemented

filters can be constructed to satisfy any set of criteria requiredin a finite-difference code. The present results show that highly
by the high-resolution schemes. For example, the filter can beresolved numerical solutions, i.e., sharp shocks with very little oscil-

lation behind them, can be achieved by applying this nonlinear constructed to satisfy the monotonicity preserving requirement
filter to the finite-difference solution at every timestep. Plane wave of the TVD scheme, or it can be constructed to satisfy the
propagation in three types of solids is calculated by the LAYER code. criteria leading to ENO schemes [6]. Using these filters, the
A two-dimensional grid is used to compute these one-dimensional

properties of the high-resolution schemes can be implementedplane wave problems. For linear elastic solids the nonlinear filter
into a finite-difference code allowing the analyst to choose theperformed very well in removing the Gibbs oscillations. For bilinear

solids the numerical solution is compared to a known analytical best numerical approach for a given problem. This is a better
solution. Because this analytical solution involves a planar shock investment than having to develop a new set of codes that uses
with a decaying pressure behind it, the existing form of the Engquist the individual schemes. Moreover, the computing cost of these
filter (designed for a constant pressure behind the shock) has to be

newer schemes is at least a factor of several higher than finitemodified. The relationship between this modified filter and the flux
difference schemes. The main reason for the higher cost ismodification in the TVD scheme is discussed. This modification

is expected to be necessary when the filter is applied to multi- the characteristic decomposition [7], the Riemann solver or
dimensional problems. The potential for obtaining highly resolved approximate Riemann solver [8], and the high-order fits to the
shocks from classical second-order finite-difference solid mechanics solution. For some problems, the advanced schemes can be an
codes using the modified nonlinear filter is demonstrated. Q 1996

order of magnitude more costly. The advantage of the filter, in
Academic Press, Inc.

this case, is that typically only a relatively small number of
grid points need be modified by the filter, resulting in substantial
savings in computer time.1. INTRODUCTION

The first attempt in extending an advanced gasdynamics
scheme to continuum mechanics is by Antman and SzymczakIn the last decade, a set of high-resolution numerical schemes

for gasdynamics [1–4] has emerged. The most notable feature [9] who applied the higher-order Godunov technique to the
longitudinal motion of an elastoplastic bar in one dimension.in these schemes is their ability to produce sharp shocks without

spurious oscillations. Although these methods are derived from This is followed by the work of Trangenstein and Colella [10]
who extended the higher-order Godunov technique to elastic-very different concepts, all of them manage to introduce, in

one form or another, a judicious amount of dissipation at chosen plastic solids in general. Detailed characteristics analyses, for
both the Eulerian and the Lagrangian frames of reference, arelocations in the flow field to reduce numerical oscillations. For

example, limiters are used in the TVD scheme of Harten [1] included in their evaluation of the compatibility of their higher-
order Godunov scheme and continuum mechanics. Becauseand the FCT method of Zalesak [2], and switches and cell-

averaged piecewise fits are used in the PPM (Colella and Wood- they [10] have taken such a general approach, even though
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of a square wave in a linear elastic material, while the second
problem is the propagation of a planar shock in a bilinear
material for which an analytical solution is available. Section
6 gives the results of the test problems as well as the solution
to the case a planar shock propagating in a nonlinear solid.
Section 7 presents our conclusions.

2. CHARACTERISTICS ANALYSIS

The small-strain momentum equation in two-dimensional
axisymmetric Lagrangian coordinates solved in the LAYER
code [11] is
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FIG. 1. Time step and spacial grid layout for the LAYER code. Nodes
indicate the variables being calculated.
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significant progress has been made, it will still be some time
before the practical engineers can benefit from this technology.
Moreover, from [9, 10] it appears that extending a high-resolu-
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tion scheme for gasdynamics to solid mechanics is quite in-
volved. This raises serious questions as to whether these high-

In writing these we used the definitionsresolution shock capturing schemes can enjoy the same success
in solids as in gasdynamics. We believe that a simpler way to
introduce the numerical methods giving sharp shocks with very
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(3)little oscillations in existing industrial codes is through the
Engquist filter. We will show in this paper that even this simpler
approach is somewhat involved, but for the class of wave propa- «rz 5
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gation problems in solids that satisfies the small strain con-
straint, the benefits of these advanced numerical techniques can
be extended to solid mechanics immediately. where ur , Vr and uz , Vz are displacements and velocities in the

radial and axial directions, respectively, and r0 and z0 are theIn this paper, we limit the study to linear and bilinear elastic
solids and a class of simple nonlinear solids. Only plane wave radial and axial Lagrangian coordinates, respectively; r0 is the

density at rest; g the acceleration due to gravity, and t is thepropagation is considered, even though a two-dimensional grid
is used in the computations. In Section 2, we show our deriva- time. These equations are center-differenced in both time and

space (see Fig. 1) and solved in the LAYER code. Note thattion of the characteristic variables, and in Section 3, we describe
this modified version of the Engquist filter. Section 4 discusses stresses and velocities are not given at the same location in

this staggered grid.the relationship between the modified filter and the flux modifi-
cation in the TVD scheme. Section 5 describes the two one- For the two test problems the stresses are related to the strains

by the linear elastic equation:dimensional test problems. The first problem is the propagation
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variable Q. For this analysis we do not need the details of Q;
we will not write it out explicitly. The resulting equation is3
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where l and e are Lame constants.
For the characteristics analysis in the radial direction, we

5 Qr . (5)collect all the terms involving the time and radial derivatives
from the six equations in the left-hand side and cast all other
terms to the right-hand side and combine them in a single The acoustic matrix is
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0 0 l(1 1 «uu)(«rz 2 drz) (1 1 «uu)(l« 2 2e)
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where « 5 «rr 1 «uu 1 «zz . where R13 and R14 are components of Ar and ni is the normaliza-
tion constant of the eigenvector ei . At this point we assembleThe eigenvalues of Ar are
the eigenvectors to form the eigenvector matrix E and calculate
the inverse of E algebraically. This completes the preparation
of the quantities needed in the characteristic decomposition.
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In a similar manner we collect the time and axial derivative

terms on the left-hand side and cast all other terms into Q in
the right-hand side. We obtain
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The corresponding axial acoustic matrix is

Az 5 3
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4. (10)
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The eigenvalues of this matrix are eigenvalues for the axial acoustic tensor, and, similarly, the
axial strain does not affect those of the radial acoustic tensor.
Lastly, the two nonzero off-diagonal terms in the strain tensor
lead to only one nonzero eigenvalue. These terms are combina-L2

z 5
1 1 «uu

2r0 5e 2
l«

2
1 (l 1 2e)(1 1 «rr)

(11) tions of shear strain and rotation, and, in general, shear strain
is the more important physical variable.

6 !Fe 2 (l 1 2e)(1 1 «rr) 2 l«/2
1 4le(2«rz 1 drz)(«rz 1 drz) G26 3. THE ENGQUIST FILTER

The version of the Engquist system filter used here is essen-
tially the same as the algorithm reported in [12] for gasdy-and the corresponding eigenvectors are
namics. The only difference is that more arrays are required
for the four equations (Eq. 5) than for the three in gasdynamics.
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At each timestep, we filter the axial direction first and then the
radial. In each direction, the filter first scans the particle velocity
array to identify the extrema. Those nodes at or adjacent to an1

z13
SLi 1

z14

2r0Li
D 2

1
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G, extremum will be filtered. If the extremum is a plateau, the
nodes adjacent to the plateau will be included. Then the filter
calls the characteristics routine to obtain the characteristic vari-

where z13 and z14 are components of Az and ni is the normalization
ables for those nodes. The filter re-scans the characteristic vari-

constant. As before, we assemble the eigenvectors to form the
ables to determine if the physical extrema in the velocity field

eigenvector matrix and obtain its inverse algebraically before
are reproduced in the characteristics fields, and, if necessary,

we call the filter subroutine.
corrections are made to each extremum in the characteristics

Equations (5) and (9) can be written in the form
arrays according to the criteria given in Algorithm 4.1 in [5].
The only modification we made is in the size of the correction
d (discussed in the next section). Afterward, the physical vari-
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ables are calculated from the corrected characteristic variables.
As mentioned in [5], because TVD is enforced in characteristics

the quasilinear form of which is space, the physical variables may occasionally violate the TVD
criterion. Indeed, in our numerical experiments, TVD is occa-
sionally violated in the physical variables; however, the oscilla-­U

­t
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tions are small and usually do not persist for more than a few
timesteps. Enforcing TVD for the physical variables is very

where A is the acoustic tensor. Operating on Eq. (14) with the costly. This is particularly true for solid mechanics and multi-
inverse of the column eigenvector matrix gives dimensional problems. We have chosen to maintain a ‘‘semi-

TVD’’ property in this filter.
­W
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4. MODIFICATION OF FILTER CORRECTIONS

We have previously noted that, in the two-dimensional caseand, finally, we obtain the set of decoupled equations in the
characteristic variables W 5 E21U. In the computations, we being treated in the present study, it has been necessary to alter

the factor that multiplies the correction d from its usual valueevaluate the physical variables in the acoustic tensor using the
arithmetic mean between nodes i and i 1 1. For the cases of 0.5 to a lower value of 0.15. The latter value was determined

via numerical experiments and was required to avoid a ‘‘stair-considered in the test problem, the arithmetic mean allows the
flux term to accommodate arbitrarily large jumps, i.e., we have stepping’’ anomaly of the basic filter for a decaying wave. We

emphasize that this modification is essential to the success ofan approximate Riemann solver.
At this point we should mention that in most continuum the filter for multi-dimensional problems because most of the

waves in multi-dimensions are decaying waves. Because thismechanics codes, the energy equation is not included. This is
the case for LAYER. The disadvantage of not having an energy ‘‘stair-stepping’’ anomaly and the modification we introduced

have not been studied or mentioned by Engquist et al. [5], weequation is that estimates of heat (therefore entropy) are impos-
sible. For complicated wave interaction problems, having the will provide an heuristic discussion concerning this modifica-

tion, and its relation to the flux modification of TVD.entropy can be very useful. For two-dimensional axisymmetric
continuum mechanics problems, the hoop strain compatibility In the original Engquist filter, corrections are often made to

reduce the difference between vj and vj11 to zero, where j iscondition is superfluous. The radial strain does not affect the
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the location of the extremum. This is achieved by correcting
the larger value by 2d uvj 2 vj11u and the smaller value by
1d uvj 2 vj11u and setting d 5 0.5. For a step wave, where the
stresses behind the wavefront are constant, the correction d 5
0.5 is acceptable because this correction flattens the extrema.
For a decaying wave, the stresses behind the wavefront de-
creases with distance away from the front. The correction of
d 5 0.5 will cause some of the filtered extrema to flatten,
leading to the shape of a staircase behind the shock. An example
is given in Section 6.

Engquist et al. [5] show that it is possible to express their
FIG. 2. Initial and boundary conditions for the planar shock problems.postprocessing conservative filter formulation in terms of a flux

modification procedure by writing the corresponding (filtered)
numerical fluxes as

TVD schemes [1]. As noted in [1], such alteration of the numeri-
cal viscosity seems to be necessary in multi-dimensional prob-
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j , (15) lems whose solutions contain contact discontinuities (linearly
degenerate characteristic fields). In addition, it is observed that
this factor can be employed to improve resolution in general.where, following [5], we have
It is not our intent in the present paper to provide a detailed
analysis of the correspondence between u and the correction
step multiplier of the Engquist filter. Rather, we wish to simplyrj ;

D1v( j)
j

D2v( j)
j

,
(16) point out the similarities to provide a justification for the modi-

fications we have made to the filter during the current study,l 5 Dt/Dx
leaving the rigorous analysis of this for future work.

and z(r) is defined as
5. THE TEST PROBLEMS

After the filter and the characteristics routines are imple-
mented into LAYER, we applied the code to two test problems;
the configuration is shown in Fig. 2. The first one is the propaga-z(r) 5 5

1, r , 22,

2r/2, 22 , r , 21

Af , r 5 1

0, r . 21.

(17)
tion of a planar stress wave in a half space of a linear elastic
solid. We limited the outer radius of the problem to a small
value and applied a zero radial velocity boundary condition at
the outer boundary. Because the problem is linear, the perfor-

We note that subscripts j indicate grid point indexing and mance of the nonlinear filter for a linear wave propagation
parenthesized superscripts ( j) denote the filter iteration step. problem can be examined.
The symbols D1 and D2 denote forward and backward differ- The second problem is the propagation of a planar shock in
ences. a bilinear solid. Figure 3 shows the stress–strain relations for

It is clear from the forms of (15) and (17) that differencing a bilinear solid. There are two bulk moduli and therefore two
of Ff will result in some dissipation whenever r # 21 and that wavespeeds, one for loading and the other one for unloading.
the actual amount of this dissipation depends on r only for
r [ (22, 21); otherwise the dissipation is either zero or is
simply proportional to D2v( j21)

j21 and D1v( j)
j . In any case, in two

dimensions we have found that the amount of dissipation arising
from (17) is not always correct. Furthermore, in the case r [
(22, 21), the factor of As multiplying 2r in the definition of z
is precisely the value of the correction step multiplier (d 5
0.5), as can be deduced from Algorithm 2.1 of [5]. In particular,
then, reducing the value of this multiplier will result in a reduc-
tion of the level of artificial dissipation, as is easily seen from
Eq. (15).

From this, it is evident that the action of this factor leads to
FIG. 3. Stress–strain relations for the bilinear and nonlinear materials.behavior similar to that induced by the parameter u in Harten’s
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FIG. 4. Solutions to the planar step wave problem: (a) The unfiltered finite-difference solution for dz 5 1 ft., and q 5 0; (b) The filtered finite-difference
solution for dz 5 1 ft and q 5 0.

The analytical solution to this problem, given by Salvadori et filter has a tendency to turn the front from a gradual rise into
a step and eventually causes the calculation to go out of boundsal. [13] simplifies to the following form. The stress is given by
in doing so. We have performed a convergence study for this
case and obtained a convergence rate of 0.7 in the L1-norm.

2s (x, t) 5 p St 2
x
c1
D1 G St 2

x
c1
D2 G St 1

x
c1
D (18) Figure 5 shows the results for Problem 2. The case of zero

artificial viscosity (q 5 0) without the filter (Fig. 5a) shows
large oscillations. In this case, the filter is able to suppress the

and the velocity is given by
oscillations as soon as they appear, before they grow to any
significant magnitude (Fig. 5b). Figure 5c shows the analytical
solution. The filtered solution requires 50% more computingrc1v(x, t) 5 p St 2

x
c1
D1 G St 2

x
c1
D1 G St 1

x
c1
D, (19)

time than the no-filter case. The numerical convergence test
shows a convergence rate of 0.6 in the L1-norm for this planar

where shock case. For this problem, d 5 0.15 is used. If d 5 0.5 is
used, stair stepping will appear behind the shock (Fig. 6). For
the linear step wave problem, our numerical experiments show

G(t) 5 Oy
m51

wmp(wmt) (20)
that the solution is unchanged for values of d between 0.1 and
0.5, which suggests that the value for d does not have to be as
high as 0.5. The optimal value, in the interest of minimizingwith w 5 (c1 2 c0)/(c1 1 c0), where c0 and c1 are the sound
the amount of artificial dissipation, is closer to 0.1.speeds corresponding to the loading and unloading moduli,

We performed the above-mentioned grid function conver-respectively. For our test problem we chose
gence tests for two reasons. The first is that a convergence
proof for the case of systems of equations is not available. It

p(t) 5
p0

1 1 t/t0
, (21) is good practice to verify that reasonable convergence rates are

achieved whenever the system of equations is changed. In this
case, we changed from the gasdynamics equations to the small-where t is the time and t0 is a decay constant. For the calcula-
strain equations for solids. The second reason is that becausetions, we used p0 5 0.1 ksi and t0 5 0.1 s.
we modified the Engquist filter (Section 4), it is important to
demonstrate that convergence is achieved in the modified filter.
Because the resulting convergence rates are similar to those6. RESULTS
we obtained for 2D gasdynamics calculations, we conclude that
very little penalty is associated with changing to the small-The filter works extremely well for the linear problem. Figure

4 shows the wave profile for this step wave with and without strain equations and introducing the modification.
Encouraged by the results of the two test problems, we pro-the filter. In the numerical experiments, we found that there is

an optimum choice of grid spacing such that the amount of ceed to solve the problem of a decaying planar shock propagat-
ing in a nonlinear material. This material has a quadratic stress–dissipation in the underlying grid is just the right amount for

the filter to operate efficiently. For extremely small grid sizes, strain relation for loading (concave upward in Fig. 3) and a
linear unloading modulus. Figure 7 shows the calculated shockless than a centimeter for this problem, the numerical oscilla-

tions will grow even when we filter the solution. On the other at the same times as in the bilinear case. Note that the shock
in the nonlinear material travels a bit slower than that in thehand, if the dissipation in the underlying grid is too high, the
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FIG. 5. Solutions to the bilinear problem: (a) The finite-difference solution for dz 5 1 ft and q 5 0; (b) The filtered finite-difference solution for dz 5 1
ft and q 5 0; (c) The analytical solution.

bilinear material due to the quadratic stress–strain relation. to effect this transition cannot be reduced. By eliminating the
Gibbs oscillations, however, numerical convergence can beFigure 8 shows the grid function convergence of the filtered

solution for both the bilinear and the nonlinear cases. For the achieved. The calculated front does steepen in physical dimen-
sions as the grid spacing is reduced, as shown in the figure.bilinear case, Fig. 8a, the filter is able to eliminate the Gibbs

oscillations even for the smallest grid spacing. However, the For the quadratic case, Fig. 8b, the shock front is typically
resolved in 5 to 6 grid points. This is clearly not as good as anumber of grid points needed to effect the transition at the

shock front increases as the grid spacing is reduced. For this, 1D problem for which our experience suggests only 2 to 3 grid
points are necessary to resolve the shock. However, consideringas well as the linear elastic problem, the sharpness of the front

is determined by the initial development of the front at the free that this is a 2D calculation, resolving the shock in 5 to 6 grids
is quite remarkable. In general, the radial stresses and velocitiessurface, where the loading is applied. The constant loading

modulus ensures the same propagation speed for the initially are five to six orders of magnitude smaller than those of the
axial.calculated front; therefore, the number of grid points needed

FIG. 7. Solution to the nonlinear problem dz 5 0.25 ft and q 5 0.FIG. 6. Typical ‘‘stair-stepping’’ in the filtered solution using d 5 0.5.
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FIG. 8. Grid solution: (a) The bilinear problem; (b) The nonlinear problem.
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